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Equidistribution of Random Walks on Spheres
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We study the equidistribution on spheres of the n-step transition probabilities of
random walks on graphs. We give sufficient conditions for this property being
satisfied and for the weaker property of asymptotical equidistribution. We
analyze the asymptotical behaviour of the Green function of the simple random
walk on Z2 and we provide a class of random walks on Cayley graphs of groups,
whose transition probabilities are not even asymptotically equidistributed.

KEY WORDS: Markov chain; nearest neighbour type; Cayley graph; Green
function; isotropy; asymptotical isotropy.

1. INTRODUCTION

In this paper we analyze some properties related to the distribution of the
n-step transition probabilities of random walks. In particular, if not
otherwise explicitly stated, we consider irreducible random walks of nearest
neighbour type on locally finite graphs, that is random walks (X, P) where
X is the vertex set of a connected graph, P=( p(x, y))x, y # X is the
stochastic transition matrix which describes the one-step transitions of a
Markov chain [Zn]n # N , with state space X and P has the property that
p(x, y)>0 if and only if x and y are neighbours. The standard example of
a random walk of nearest neighbour type is the simple random walk, that
is, if deg(x) is the number of neighbours of x, then p(x, y)=1�deg(x) if x
and y are neighbours, and 0 otherwise.

We first consider (Paragraph 2) equidistribution of the n-step transi-
tion probabilities p(n)(x, y) on the spheres S(x, k)=[ y # X : d(x, y)=k]
(where d is the natural distance on the graph).
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Definition 1.1. A random walk (X, P) is said to be isotropic with
respect to a point x0 # X if for every fixed k # N, n # N and for all
y1 , y2 # S(x0 , k), we have that p(n)(x0 , y1)= p(n)(x0 , y2).

Note that this definition can be given also in terms of Green functions
(see Eq. (9)).

Particular symmetric graphs, such as for example the free product of
n copies of a complete graph with a finite number of vertices or the
homogeneous tree are radial with respect to (at least) one of their vertices
x0 (we will be more specific in Paragraph 2). Isotropy is strongly linked
with the action of the automorphism group 1 of X. Every 1x0

-invariant
random walk (in particular the simple random walk) on an x0 -radial graph
is isotropic with respect to x0 (Theorem 2.2). Moreover, we classify the
isotropic random walks on the trees which are radial with respect to one
of their vertices (Proposition 2.3).

When equidistribution is not satisfied, we look for some kind of
asymptotic equidistribution (Paragraph 3) of the transition probabilities
according to the following definition.

Definition 1.2. The random walk is said to be asymptotically
isotropic with respect to a point x0 # X if for every fixed k # N, and for all
y1 , y2 # S(x0 , k) we have that p(n)(x, y1)t

n p(n)(x, y2).

We recall that if [an]n and [bn]n are two sequences then ant
n bn if

there exists a sequence [on]n and n0 # N such that, \n�n0 , an=bn(1+on),
and limn � � on=0.

Given a finitely generated, discrete group 1 and an irreducible prob-
ability measure + on 1 (that is, the support of + generates 1 as a semi-
group), we denote by (1, +) the random walk on the Cayley graph of 1
and with transition probabilities

p(x, y)=+(x&1y), x, y # 1

In Paragraph 3 we prove a necessary and sufficient condition for the
asymptotical isotropy of a recurrent, strongly periodic (or strongly
aperiodic) random walk (Theorem 3.2). In particular this condition is
satisfied by every recurrent random walk on the Cayley graph of a group
(Remark 3.3).

We also extend a result obtained by Avez in (ref. 1, Theorem 1) to the
general case of symmetric random walks on amenable groups (Theorem 3.4)
and such a result implies that these random walks are asymptotically
isotropic.
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Paragraph 4 is devoted to the study of the Green function
GZ 2((0, 0), (a, b) | z) of the simple random walk on Z2 (see Eq. (18)). This
study is needed for the estimates in Paragraph 5, but is also interesting in
itself. We first obtain an expression for the n-step transition probabilities
and we estimate them for n going to infinity, deriving such facts from the
transition probabilities of the simple random walk on Z (Corollary 4.3).
Then, using Laplace-type techniques, we obtain an asymptotic estimate for
GZ 2((0, 0), (a, b) | z) when (a, b) goes to infinity along a straight line, and
for any z # (0, 1) (Theorem 4.5).

In Paragraph 5 we study the asymptotic behaviour of the transition
probabilities on the free product of the simple random walk on Z2 and a
random walk on a group 1. First we introduce some technical instruments
developed by Woess, (2) Cartwright and Soardi, (3) see also Cartwright; (4)

then we choose two points on a sphere S(e, k) (where e is the unit element
of the free product) and we compare the asymptotic values of the transition
probabilities from e to each point. We prove that, under rather general
conditions (Assumption 5.1) the random walk on the free product is far
from being asymptotically isotropic (Theorem 5.2).

This provides us a whole family of random walks which, despite their
properties of symmetry, are not asymptotically isotropic, including the sim-
ple random walk on Z V Z2. This is the simplest among the locally free groups
which were treated by Nechaev, Grosberg and Vershik, (5) Paragraph 3. Their
Theorem 5 gives an estimate of the asymptotic values of the transition
probabilities assuming that they are equidistributed on spheres, which con-
trasts our rigorous computations.

2. ISOTROPIC RANDOM WALKS

Let us recall that, if (X, d ) is a graph with its natural distance,
AUT(X ) is the group of all the bijective maps # from X onto itself such
that xty if and only if #xt#y, where t denotes neighbourhood. We note
that # # AUT(X ) if and only if # is an isometry from X onto itself ; in
particular for all x # X and all k # N, # is an isometry from S(x, k) onto
S(#x, k) and deg(x)=deg(#x).

Let 1 be a subgroup of AUT(X ): a random walk (X, P) is called
invariant if for all x, y # X, for all # # 1 we have that p(x, y)= p(#x, #y).

Definition 2.1. A graph (X, d ) is called x-radial if 1x=
[# # AUT(X ) : #x=x] acts transitively on S(x, k) for all k # N.

A graph (X, d ) is called distance transitive if for all x, y, x$, y$ # X such
that d(x, y)=d(x$, y$) there exists # # AUT(X ) satisfying #x=x$, #y= y$.
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We observe that a distance transitive graph is also radial with respect
to every x # X, but the converse is not true (see Proposition 2.3 (ii)). If X
is x-radial then deg( y) depends only on d(x, y); in particular, if X is dis-
tance transitive, deg( } ) is constant. Moreover if (X, P) is a 1x -invariant
random walk and X is an x-radial graph then X must be locally finite.

It is worth noting that there is a complete characterization of all
infinite, locally finite, distance transitive graphs X, that is X=Kr V } } } V Kr

n times

,

i.e., the free product of n copies of the complete graph with r vertices Kr

(see Macpherson(6) and Ivanov, (7) Theorem 4).

Theorem 2.2. (i) Let (X, P) be a 1x0
-invariant random walk

(where x0 # X ) on an x0 -radial graph X, then (X, P) is isotropic with
respect to x0 .

(ii) Let X be a tree; if (X, P) is a random walk isotropic with respect
to x0 # X then (X, P) is 1x0

-invariant.

Proof. (i) Let k # N, y1 , y2 # S(x0 , k) and # # 1x0
such that #y1= y2 .

Let x, y # X,

p(n)(x, y)= :
x1 ,..., xn&1 # X

p(x, x1) p(x1 , x2) } } } p(xn&1 , y)= p(n)(#x, #y)

where in the last equality we applied the hypothesis of 1x0
-invariance and

the bijectivity of #. If we set x=x0 , y= y1 we get the thesis.

(ii) We first note that on a tree every vertex x # S(x0 , k), k�1, has
exactly one neighbour on S(x0 , k&1) and all the others on S(x0 , k+1).
Let # # 1x0

, we have that

p(x, y)>0 � xty � #xt#y � p(#x, #y)>0

Then let us take xty; if x=x0 , the property of isotropy implies that
p(x0 , y)= p(#x0 , #y). If x{x0 and k=d(x, x0), we have two cases:

(a) y # S(x0 , k+1), then

p(x, y)=
p(k+1)(x0 , y)

p(k)(x0 , x)
=

p(k+1)(x0 , #y)
p(k)(x0 , #x)

= p(#x, #y)

(b) y # S(x0 , k&1), then

p(x, y)=1& :
w{ y

p(x, w)=1& :
w{ y

p(#x, #w)= p(#x, #y) K
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This result can be applied to describe the isotropy of the random
walks on a class of trees. Given a sequence [nk]k/N, k=0, 1, 2,..., we
denote by T[nk] the tree branching from a vertex o such that if d(o, x)=k
then deg(x)=nk .

Proposition 2.3. (i) A tree X is o-radial if and only if X=T[nk]

for some [nk]; hence a random walk on T[nk] is isotropic with respect to
o if and only if it is invariant.

(ii) T[nk] is radial with respect to any of its vertices x if and only if
nk=nk+2 for all k=0, 1,..., in particular it is distance transitive if and only
if nk is constant; under these hypotheses a random walk on T[nk] is
isotropic with respect to x if and only if it is 1x -invariant.

Proof. (i) The proof is very easy (remember that if X is o-radial
then deg( } ) is constant on S(o, k) for every k # N. The characterization of
all the random walks which are isotropic with respect to o follows from
Theorem 2.2.

(ii) The proof is straightforward and we omit it. K

Local limit theorems and Green kernel asymptotics for isotropic ran-
dom walks on a homogeneous tree were derived by Sawyer (see ref. 8).

3. ASYMPTOTICALLY ISOTROPIC RANDOM WALKS

In this section we want to obtain a class of asymptotically isotropic
(but in general not isotropic) random walks. Suppose that (X, P) is a peri-
odic random walk with period d; (X, P) is called strongly periodic if there
exists n0 # N such that infx # X p (nd)(x, x)>0, for all n�n0 (we include in
this definition the case d=1, which is usually called strongly aperiodic). We
note that strong periodicity holds for all random walks which are invariant
under a quasi-transitive group action (see ref. 9, Paragraphs 2.D and 5.A),
in particular for random walks on groups.

A random walk (X, P) is called reversible if there exists a strictly
positive function & on X such that &(x) p(x, y)=&( y) p( y, x), for all
x, y # X; we note that the period of such a random walk must be equal to
1 or 2.

In the following theorem the random walk is not required to be of
nearest neighbour type.

Theorem 3.1. Let (X, P) be a recurrent, strongly periodic random
walk of period d; then for all x, y # X we have

p(n+m)(x, y)t
n p(n)( y, y) (1)
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where m # N such that p(m)(x, y)>0.

Proof. We note that it is enough to consider the case n#0 (mod d ),
in fact in the other cases the probabilities involved in Eq. (1) are 0.

Let us fix y # X and let C0 , C1 ,..., Cd&1 be the periodicity classes such
that y # C0 . For every x # X we define kx such that x # Cd&kx

. We observe
that if (X, P) is recurrent and strongly periodic by (ref. 9, Theorem 5.2(b))

lim
n � +�

p((n+1) d+kx)(x, y)
p(nd+kx)(x, y)

=1 (2)

Let nx # N such that p((nx+1) d&kx)( y, x)>0 and :x=( p((nx+1) d&kx)( y, x))&1,
then by Eq. (2)

p(nd+kx)(x, y)
p(nd )( y, y)

=:x
p((nx+1) d&kx)( y, x) p(nd+kx)(x, y)

p(nd )( y, y)

�:x
p((nx+n+1) d )( y, y)

p(nd )( y, y)
www�n � +� :x

Thus the sequence of functions x [ p(nd+kx)(x, y)�p (nd )( y, y) is bounded
pointwise in x, i.e., relatively compact with respect to pointwise con-
vergence. Hence there exists a subsequence [n$]/N and a function g such
that

lim
n$

p(n$d+kx)(x, y)
p(n$d )( y, y)

= g(x), \x # X

The function g is nonnegative and superharmonic, in fact

Pg(x)= :
w # X

lim
n$

p(x, w)
p(n$d+kw)(w, y)

p (n$d )( y, y)
�lim

n$

p(n$d+kx)(x, y)
p(n$d )( y, y)

= g(x)

using Fatou's Lemma and the fact that p(x, w){0 if and only if kw=kx&1
(mod d ) (note that if kx=0 Eq. (2) is needed). By recurrence g is constant
and, since g( y)=1, we have

lim
n � +�

p(nd+m)(x, y)
p(nd )( y, y)

=1 K (3)

This result allows us to give a necessary and sufficent condition for a
class of random walks to be asymptotically isotropic.
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Theorem 3.2. (i) Let (X, P) be a recurrent, strongly periodic ran-
dom walk of period d and let x # X. Then (X, P) is asymptotically isotropic
with respect to x if and only if for every k # N and for all y, y1 # S(x, k),
we have

p(n)( y, y)t
n p (n)( y1 , y1) (4)

(ii) Let (X, P) be a reversible, recurrent, strongly periodic random
walk of period d and let x # X. Then (X, P) is asymptotically isotropic with
respect to x if and only if the reversibility function & is constant on S(x, k)
for every k # N.

Proof. (i) Let y, y1 # S(x, k) then p(k)(x, y)>0, p(k)(x, y1)>0; by
Theorem 3.1, p(n+k)(x, y)t

n p(n+k)(x, y1) if and only if p(n)( y, y)t
n

p(n)( y1 , y1).

(ii) If & is the reversibility function of (X, P) and y, y1 # X such that
d( y, y1)=m then, by Theorem 3.1,

p(nd )( y, y)
p(nd )( y1 , y1)

=
p (nd )( y, y)

p (nd+m)( y1 , y)
}

p(nd+m)( y1 , y)
p(nd )( y1 , y1)

=
p(nd )( y, y)

p(nd+m)( y1 , y)
}
&( y) p(nd+m)( y, y1)
&( y1) p(nd )( y1 , y1)

www�n � +� &( y)
&( y1)

(5)

Hence the first part of this theorem leads us to the conclusion. K

Remark 3.3. There are two situations in which Theorem 3.2 is
easily verified: first of all if (X, P) is a recurrent random walk on a Cayley
graph of a group; secondly if (X, P) is a symmetric (i.e., reversible with
&#1), recurrent, strongly periodic random walk. In these cases (X, P) is
asymptotically isotropic with respect to every point x # X.

We want to point out that the properties of isotropy and asymptotical
isotropy are closely linked with the transition probabilities; a graph X
could be equipped with stochastic matrices P, P1 such that the random
walks (X, P) and (X, P1) have a different behaviour. Explicit examples of
this fact are the so called n-dimensional combs (see ref. 10). These are,
roughly speaking, infinite trees recursively defined as follows: a one-dimen-
sional comb (1-comb) is an infinite linear chain; an (n+1)-dimensional
comb ((n+1)-comb) is obtained attaching a 1-comb to every point of an
n-comb. By using techniques of electric networks on graphs (see ref. 9,
Theorem 4.8) it is easy to show that the simple random walk on an n-comb
is recurrent; moreover it is clearly reversible (with &(x)=deg(x)) and
strongly periodic of period 2 but we cannot choose any point x # X such
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that the reversibility function & is constant on every sphere S(x, k); hence,
by Theorem 3.2(ii), this random walk is not asymptotically isotropic.
However there is a natural way to assign to a tree-like graph, with
deg( } )�2, a symmetric random walk; if such a graph is an n-comb this
walk turns out to be recurrent, strongly periodic with period 2 and then,
by Theorem 3.2(ii), also asymptotically isotropic with respect to any point
x # X.

In the next theorem we slightly extend a result of Avez (ref. 1,
Theorem 1). We consider a random walk on a group; the walk is not
required to be recurrent, nor the group to be finitely generated.

Theorem 3.4. Let G be an amenable, countable group and + a
symmetric, probability measure whose support generates G then

p(n+m)(h, g)t
n p(n+k)(h, g1),

where h, g, g1 # G and m, k # N such that p(m)(h, g)>0 and p(k)(h, g1)>0.

Proof. Since G is a group it is enough to consider only the case h=e,
where e is the unit of G. If we prove Eq. (3) we obtain the thesis by using
the same considerations as in Theorem 3.2 (Eq. (4) holds by Remark 3.3).

By our hypotheses we have that the period of the random walk, d,
must be 1 or 2. If d=1 Avez proved (3) in ref. 1, Theorem 1.

If d=2 and m is even (i.e., d(e, g) is even) then

lim
n � +�

p(2n+m)(e, g)
p(2n)(e, e)

= lim
n � +�

p(2n+m)(e, g)
p(2n+m)(e, e)

}
p(2n+m)(e, e)

p(2n+m&2)(e, e)
} } }

p(2n+2)(e, e)
p (2n)(e, e)

=1 (6)

(see ref. 1, Lemma 4 and Lemma 5). If d=2 and m is odd (i.e., d(e, g) is
odd) then

p(2n+m)(e, g)
p(2n)(e, e)

= :
hte

p(e, h)
p(2n+m&1)(e, h&1g)

p(2n)(e, e)
www�n � +�

:
hte

p(e, h)=1

(note that for all n�1, for all hte, p(2n+m&1)(e, h&1g)>0) where evalu-
ating the limit we used the fact that, because of Lemma 1 and Lemma 2
of ref. 1, (note that m&1 is even),

p(e, h)
p(2n+m&1)(e, h&1g)

p(2n)(e, e)
�p(e, h) (7)
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By the previous part of the proof, we have that the left hand side of Eq. (7)
converges to p(e, h) if n � � then we can apply the Lebesgue's bounded
convergence theorem to the sum in Eq. (6). K

By using the previous result, every symmetric random walk on a count-
able amenable group is an asymptotically isotropic random walk; in par-
ticular every symmetric random walk on a countable, abelian group is
asymptotically isotropic. For example, this holds for every symmetric
random walk on Zd. Note that in the case of Z2 even the simple random
walk is not isotropic (by Eq. (11) below).

4. ASYMPTOTIC BEHAVIOUR OF THE GREEN FUNCTION IN Z2

Given a random walk (X, P) the generating function of the transition
probabilities (usually called the Green function) is defined as the following
power series:

GX (x, y | z)= :
+�

n=0

p(n)(x, y) zn, x, y # X, z # C (8)

and its radius of convergence will be denoted by r.
Observe that by mean of this generating function, Definition 1.1 is

equivalent to

\k # N, \y1 , y2 # S(x0 , k), GX (x0 , y1 | z)=GX (x0 , y2 | z), \z : |z|<r
(9)

Our next step is to calculate the asymptotic value of the Green func-
tion of Z2 when the distance between the starting and the ending point
grows up to infinity and z is a real number, 0<z<1. The proof of the
main result of this section (Theorem 4.5) exploits Laplace-type techniques,
compare, e.g., with ref. 11, Theorem 3.1.

It is well known that p(n)(x, y)=0 if d(x, y)>n; from now on when
we write p(n)(x, y) we mean d(x, y)�n # [0, 1]. Note also that the Green
function can be written as

G(x, y | z)= :
+�

n=d(x, y)

p(n)(x, y) zn (10)

In order to obtain a useful expression for the transition probabilities
p(n)(x, y) of the simple random walk on Z2 we consider the direct product
of two copies of the simple random walk on Z according to the following
definition.
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Definition 4.1. Let (Xi , Pi) i=1,..., m be a finite family of random
walks; we call direct product of the family (Xi , Pi) i=1,..., m a random walk on
the direct product >m

i=1 Xi with transition probabilities

p(n)((x1 ,..., xm), ( y1 ,..., ym)) := `
n

i=1

p (n)
Xi

(xi , yi)

In particular, if m=2, X1=X2=Z and P1=P2 are the transition matrices of
the simple random walk, let (Z2, PZ_Z) be the product and [ pZ_Z((x1 , x2),
( y1 , y2)) : xi , yi # Z, i=1, 2] be the transition probabilities.

As a consequence of the periodicity of the simple random walk on Z,
the random walk (Z2, PZ_Z), starting from (0, 0) may reach only the
points in Z2 such that x+ y is even, while the same random walk, starting
from a point (x� , y� ) such that x� + y� is odd may reach only points with the
same property. In this way Z2 turns out to be partitioned into two subsets,
and each of them is isomorphic to Z2 itself.

Consider the following isomorphism between Z2 and its subset
associated to the random walk (Z2, PZ_Z) starting from the origin:

Z2=[(x, y) : x, y # Z] [ [(a, b) # Z2 : a+b is even]

(x, y) [ (x& y, x+ y)

It is obvious that

p (n)
Z2 ((0, 0), (x, y))= p(n)

Z_Z
((0, 0), (x& y, x+ y))

= p (n)
Z (0, x& y) p (n)

Z (0, x+ y)

Recalling that the period of the simple random walk on Z is 2, the last
product can be written as

p(n)
Z2 ((0, 0), (x, y))

={
1

22n \ n
(n+|x& y| )�2+\

n
(n+|x+ y| )�2+ if n+|x|+| y| is even

(11)

0 if n+|x|+| y| is odd

Now we are interested in some kind of asymptotic estimate of these
transition probabilities when n goes to infinity; the next theorems will
provide us this information.
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Theorem 4.2. The transition probabilities p(n)
Z (0, k) can be written as

p (n)
Z (0, k)={;n \ |k|

n + exp {n. \ |k|
n += if n+|k| is even

(12)

0 if n+|k| is odd

where

.(!)=
1
2 \! log \1&!

1+!+&log(1&!2)+ (13)

lim
n � �

1
n

sup
! # [0, 1]

|log(;n(!))|=0 (14)

and the estimate

;n(!)t
n {�

2
?n(1&!2)

_n(1&!)
2e &

(n�2)(1&!)

}� 2
1+!<_

n
2

(1&!)& !

if ! # [0, 1&n&3�4]

if ! # (1&n&3�4, 1]

(15)

holds uniformly with respect to !.

Proof. Eqs. (12), (13), (15) follow applying De Moivre�Stirling's
formula [n!=nn

- 2?n exp(&n+%n �12n), |%n |�1] to Eq. (11); Eq. (14)
follows noting that the property holds if ! is allowed to vary among
[0, 1�n, 2�n,..., 1], which are the only values of interest. K

We remark that the exponent &3�4 has no particular meaning, instead
of it we could have chosen any value between &1 and 0.

By using Eq. (11) and the previous theorem we can obtain the following
corollary.

Corollary 4.3. The transition probabilities p (n)
Z2 (e, (x, y)) (where

e=(0, 0)) can be written as

p(n)
Z2 (e, (x, y))

={
;n \ |x& y|

n + ;n \ |x+ y|
n + exp {n. \ |x& y|

n += exp {n. \ |x+ y|
n +=

if n+|x|+| y| is even

(16)0 if n+|x|+| y| is odd
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where .(!) is defined by Eq. (13) and

;n(!1) ;n(!2)t
n 2

?n - (1&!2
1)(1&!2

2)
(17)

the estimate being uniform with respect to !1 , !2 # [0, 1&n&3�4].

Our aim is now to understand when we can replace each term in the
sum

GZ2(x, y | z)= :
+�

n=|x|+| y|

p (n)
Z2 (x, y) zn (18)

by its asymptotic value; the next (technical) lemma gives us an answer.

Lemma 4.4. Let [an(k)]n and [bn(k)]n be two families of sequen-
ces whose sign does not depend on n such that an(k)=bn(k)(1+on(k)). Let
[An]n a sequence of subsets of N, such that for all =>0 there exists n=

satisfying |on(k)|<=, for all n�n= , k # An . If [rk]k is a real sequence such
that rk ww�k � � +� and |�n�rk : An % k an(k)|<+� for all k # N, then

:
n�rk : An % k

an(k)t
k :

n�rk : An % k

bn(k)

Proof. Let us fix = # (0, 1) and k= # N such that for all k�k= we have
that rk>n= then

(1&=) } :
n�rk : An % k

bn(k) }� } :
n�rk : An % k

an(k) }�(1+=) } :
n�rk : An % k

bn(k) }
If (x, y) # Z2"[e], we define *=|(|x|&| y| )�( |x|+| y| )| and let

8(!)#8(!, z, *) :=
1
! _log z+

1
2 \! log

1&!
1+!

&log(1&!2)

+*! log
1&*!
1+*!

&log(1&*2!2)+& (19)

It is easy to prove that ! [ 8(!) attains only one maximum in the interval
(0, 1), namely in

!(z)#!(z, *) :=� 2(1&z2)

1+*2+- (1&*2)2+4z2*2
(20)
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In particular it is easy to show that 8(!(z)) can be written as

8(!(z))#8(!(z, *), *)=
1
2 _log

1&!(z)
1+!(z)

+* log
1&*!(z)
1+*!(z)& (21)

Theorem 4.5. The Green function of the simple random walk on
Z2 admits the following asymptotic estimate:

GZ2(e, k(x, y) | z)

t
k exp[k( |x|+| y| ) 8(!(z))]

!(z) - k( |x|+| y| ) - 1&!(z)2
- 1&*2!(z)2 � &2

?8"(!(z))
(22)

where (x, y) # Z2"[e] and k(x, y)=(kx, ky).

Proof. We first note that, taking into account the period of the
simple random walk in Z2, we can write the Green function as follows:

GZ2(e, k(x, y) | z) := :
�

n=0

p (2n+k( |x|+| y| ))
Z2 (e, k(x, y)) z2n+k( |x|+| y| ) (23)

We split the sum (23) into two parts:

GZ2(e, k(x, y) | z)=S1(k(x, y))+S2(k(x, y))

where

S1(k(x, y))= :
n : |!n&!(z)|<$

p (2n+k( |x|+| y| ))
Z2 (e, k(x, y)) z2n+k( |x|+| y| ) (24)

and S2(k(x, y)) is the rest. Moreover, in Eq. (24), we set !n=
[k( |x|+| y| )]�[2n+k( |x|+| y| )] , and we choose $>0 such that I$ :=
(!(z)&$, !(z)+$)/[0, 1] and

0�8(!)&8(!(z))= 1
28"(!(z))(!&!(z))2+o((!&!(z))2)

� 1
48"(!(z))(!&!(z))2, \! # I$ (25)

This choice allows us to apply Lemma 4.4 in the sum (24) by using the
asymptotic estimates (16) and (17) to obtain

S1(k(x, y))t
k :

n : |!n&!(z)|<$

2 exp[k( |x|+| y| ) 8(!n)]

?(2n+k( |x|+| y| )) - (1&!2
n)(1&*2!2

n)
(26)
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since |x+ y|�( |x|+| y| ), |x& y|�( |x|+| y| ) # [1, *]. We now perform a change
of variable by setting _j=(!j&!(z)) - k( |x|+| y| ) and 2_j=_j&_j+1 . Then

2_jt
j (2k( |x|+| y| )3�2)�(2j+k( |x|+| y| ))2=2!2

j �- k( |x|+| y| ). Hence

S1(k(x, y))t
k :

n : |_n|<$ - k( |x|+| y| )

exp[k( |x|+| y| ) 8(!(z))]

? - k( |x|+| y| )

_
1

�1&\!(z)+
_n

- k( |x|+| y| )+
2

_
1

�1&*2 \!(z)+
_n

- k( |x|+| y| )+
2

_
1

!(z)+
_n

- k( |x|+| y| )

_exp {1
2

8"(!(z)) _2
n+o(_2

n)= 2_n (27)

Because of the estimate (25), we can apply Lebesgue's bounded conver-
gence theorem to the Cauchy�Riemann sum in Eq. (27) obtaining

S1(k(x, y))t
k exp[k( |x|+| y| ) 8(!(z))]

?!(z) - k( |x|+| y| ) - 1&!(z)2
- 1&*2!(z)2

_|
R

exp {1
2

8"(!(z)) _2= d_ (28)

The proof will be complete if we show that S2(k(x, y))�S1(k(x, y)) � 0 as
k � +�, where

S2(k(x, y))= :
n : |!n&!(z)|�$

p (2n+k( |x|+| y| ))
Z2 (e, k(x, y)) z2n+k( |x|+| y| ) (29)

Using Eq. (28), we obtain that

S2(k(x, y))
S1(k(x, y))

t
k CS2(k(x, y)) - k( |x|+| y| ) exp[&k( |x|+| y| ) 8(!(z))]

(30)
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We note that there exists an =1>0 such that

8(!)&8(!(z))� &=1 , \! : |!&!(z)|�$

Elementary computations show that

;n(!) # _� 1
?n

exp {&1&
1

4n= , �2
?

exp {1+
1

4n=&
if !=k�n, k=0, 1,..., n&1, while ;n(1)=1. Hence

S2(k(x, y)) exp[&k( |x|+| y| ) 8(!(z))]

� :
+�

n=0

C$ exp[(8(!n)&8(!(z))) k( |x|+| y| )]

where one could show that it is possible to apply Lebesgue's bounded con-
vergence theorem. This implies that the series tends to zero as k tends to
infinity, which with Eq. (30) leads to the conclusion. K

In the context of the simple random walk, it appears that the above
combinatorial method is more efficient than the use of Fourier transforma-
tion as in ref. 12.

Remark 4.6. The main term in the Eq. (22) is the exponential of
k( |x|+| y| ) 8(!(z)); in order to compare the asymptotic behaviour of the
Green function along different directions (i.e., corresponding to different
values of *) it is useful to study the function

* [ 8(!(z, *), *) (31)

with * # [0, 1]. Obviously by definition * must be rational, but we can look
at it as a real variable to study Eq. (31). By differentiating Eq. (19) and
taking into account that �! 8(!(z), *)=0 (since !(z) is a maximum), we
have that (d�d*) 8(!(z), *)=�*8(!(z), *)<0, for all z # (0, 1). This means
that if we choose (x, y) and (x� , y� ) with the same (strictly positive) distance
from the origin and so that *<*� (where * is the same as before and
*� :=|( |x� |&| y� | )�( |x� |+| y� | )| ) then

lim
k � +�

GZ2(e, k(x, y) | z)
GZ2(e, k(x� , y� ) | z)

=+� (32)

We recall that *=1 refers to k(x, y) on one of the axes, whereas *=0
refers to k(x, y) on one of the bisectors.
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5. THE ANISOTROPY OF RANDOM WALKS ON 1 V Z2

In this paragraph we want to discuss a particular random walk on the
Cayley graph of a free product of groups.

Given a (finite or countable) family (1i)i # I of random walks, where
each 1i is a finitely generated, discrete group, with �i # I 1i=[e], the unit
element, and +i is an irreducible probability measure defined on 1i , i # I, we
define the free product of these random walks to be the random walk (1, +)
where 1= Vi # I 1i is the free product of the 1i 's and + is a convex com-
bination of the +i 's:

+= :
i # I

ai+i , ai>0, :
i # I

ai=1

(for further details see, e.g., ref. 9, Paragraph 6.D). Of course the free
product depends on the choice of the weights ai , i # I.

We already introduced the Green function GX (x, y | z) of a random
walk (X, P) as a power series defined by Eq. (8). In addition we need
another important generating function related to the Green function; given
a general Markov chain Zn described by the random walk (X, P), we set
the first return probabilities and their generating function

f (n)(x, y)=Pr[Zn= y, Zk{ y, k=1,..., n&1 | Z0=x]

f (0)(x, y)=0

FX (x, y | z)= :
+�

n=0

f (n)(x, y) zn, x, y # X, z # C

In their common domain of convergence

GX (x, y | z)=FX (x, y | z) GX ( y, y | z) (33)

where x, y # X, x{ y.
Let us now fix a root o # X (if X is a group, the natural choice for o

is the unit element e) and denote by 8X (t) the analytic function defined in
ref. 2, Paragraph 2 satisfying

8X (zGX (o, o | z))=GX (o, o | z), z # C.

Let 9X (t)=8X (t)&t8$X (t), 0<t<r; the results in ref. 2 show that there
exists a unique %X # (0, +�] such that

lim
t � %X

&
9X (t)=0
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It is easy to show that the function t [ t�8X (t) is strictly increasing in
(0, %X) and

lim
t � %X

&

t
8X (t)

# sup
t # (0, %X )

t
8X (t)

=r (34)

Let us define, following ref. 2, Paragraph 3

8X (x | t)=FX \o, x } t
8X (t)+

where x # 1"[o]; we note that if t # (0, %X) then the previous equation is
well defined since t�8X (t)�r.

Let us take a (non trivial) discrete group 1 and a probability measure
+1 defined on it. Let (Z2, +2) be the simple random walk on Z2 and con-
sider the free product (1 V Z2, +) where +=a1 +1+a2+2 according to the
previous definition.

Let us denote by Gi , Fi , ri , 8i , 9i , %i , i=1, 2, V, the functions and
quantities defined before, referring to (1, +1) if i=1, to (Z2, +2) if i=2 and
to the free product if i=V (for numerical estimates of % for simple random
walk on Zd see ref. 4).

It is well known (see ref. 13) that a free product 1=Vi # I 1i is
amenable if and only if |I |=2 and |11 |=|12 |=2 (this case is treated in
refs. 14 and 15). This is not our case, since 12=Z2, therefore (1 V Z2, +) is
nonamenable, hence r

*
>1, %

*
<+� and the walk is not r-recurrent (see

ref. 16). Let d be the period of this random walk: obviously, d=2 if the
period of (1, +1) is even, and d=1 otherwise. From now on let the follow-
ing assumption hold.

Assumption 5.1. One of the following holds:

(i) (1, +1) is an r-recurrent and reversible random walk;

(ii) 1=Zn, with n�4 and +1 has finite exponential moments, or
zero mean and finite moments of order min[n, 2];

(iii) 1 has polynomial growth with degree :�4 and +1 is symmetric
with finite moments of order min[:, 2].

Let us note that the simple random walk on Z2 satisfies all the pre-
vious conditions. If (1, +1) satisfies (i) (resp. (ii) or (iii)) we have that for
(1 V Z2, +) Theorem 6 in ref. 2 (resp. Corollary 17.7 in ref. 17) holds.

Theorem 9.19 in ref. 17 shows that %
*

�min[%1�a1 , %2 �a2]. Moreover,
we note that if t # (0, %

*
) then a2 t�82(a2t) # (0, 1) because of Eq. (34) and

r2=1.
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From now on, [k(x, y)]k and [k(x� , y� )]k will be two families of
``words'' belonging to the subgroup [e] V Z2 of 1 V Z2.

Theorem 5.2. Suppose that (1, +1) satisfy Assumption 5.1; let
|x|+| y|=|x� |+ | y� |{0 and *<*� (where *=|( |x|&| y| )�( |x|+| y| )| and
*� =|( |x� |&| y� | )�( |x� |+| y� | )| ) then there exists a function g((x, y), (x� , y� ), k)
such that

p (nd+k( |x|+| y| ))
1 V Z2 (e, k(x, y))

p (nd+k( |x� |+| y� | ))
1 V Z2 (e, k(x� , y� ))

t
n g((x, y), (x� , y� ), k) (35)

where d is the period of the random walk on the free product, and

lim
k � +�

g((x, y), (x� , y� ), k)=+� (36)

Proof. As shown in ref. 2, Theorem 6 or in ref. 17, Corollary 17.7, we
have that

p (nd+k( |x| +| y| ))
1 V Z2 (e, k(x, y))

p (nd+k( |x� |+| y� | ))
1 V Z2 (e, k(x� , y� ))

t
n 82(k(x, y) | a2 %

*
)

82(k(x� , y� ) | a2 %
*

)
}

1
%

*
+

a28$2(k(x, y) | a2%
*

)
82(k(x, y) | a2%

*
)

1
%

*
+

a2 8$2(k(x� , y� ) | a2%
*

)
82(k(x� , y� ) | a2%

*
)

(37)

In order to study the previous equation, we need to know F2 and F $2 .
Assuming from now on t # R, t>0

F $2(e, k(x, y) | t)
F2(e, k(x, y) | t)

=
k
t
+

1
t

�+�
i=1 �+�

n=k+i f (n)(e, k(x, y)) tn

�+�
n=k f (n)(e, k(x, y)) tn �

k
t

www�k � +� +�

and using Eq. (33) (recalling that, on a group X, GX ( y, y | z)=GX (e, e | z)
for every y # X ) we have that

F $2(e, k(x, y) | t)
F2(e, k(x, y) | t)

t
k G$2(e, k(x, y) | t)

G2(e, k(x, y) | t)
(38)

Performing similar computations as in Theorem 4.5, using

G$2(e, k(x, y) | t)

=
1
t

:
+�

n=0

(nd+k( |x|+| y| )) p(nd+k( |x|+| y| ))(e, k(x, y)) tnd+k( |x|+| y| ) (39)
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we obtain

G$2(e, k(x, y) | t)

t
k - k( |x|+| y| ) exp[k( |x|+| y| ) 8(!(t))]

t!(t)2
- 1&!(t)2

- 1&*2!(t)2 � &2
?8"(!(t))

(40)

Obviously, Eqs. (38) and (40) hold for every (x, y) # Z2"[0, 0]. Now, using
Eqs. (22), (37), (38), and (40), it follows that

p (nd+k( |x| +| y| ))
1 V Z2 (e, k(x, y))

p (nd+k( |x� |+| y� | ))
1 V Z2 (e, k(x� , y� ))

t
n

G2 \e, k(x, y) } a2%
*

82(a2%
*

)+
G2 \e, k(x� , y� ) } a2%

*
82(a2%

*
)+

}
! \ a2%

*
82(a2%

*
)
, *� +

! \ a2%
*

82(a2 %
*

)
, *+

where ! is the function defined by Eq. (20). Finally, Eq. (32) implies that

lim
k � +�

G2 \e, k(x, y) } a2%
*

82(a2%
*

)+
G2 \e, k(x� , y� ) } a2%

*
82(a2%

*
)+

}
! \ a2%

*
82(a2%

*
)
, *� +

! \ a2%
*

82(a2 %
*

, *+
=+� K

It is obvious that if (1 V Z2, +) were an asymptotically isotropic ran-
dom walk then g((x, y), (x� , y� ), k)#1; if the hypotheses of Theorem 5.2 are
satisfied then Eq. (36) shows that (1 V Z2, +) is not an asymptotically
isotropic random walk.

We obtain the simple random walk on Z V Z2 setting 1=Z, +1 the
simple random walk on Z, a1=1�3 and a2=2�3. Obviously (Z, +1) satisfies
Assumption 5.1, then by Theorem 5.2 the simple random walk on the free
product is far from being asymptotically isotropic, hence it cannot be
isotropic as was supposed in ref. 5 Theorem 3.1.

Moreover ref. 5, Eq. (3.1) would imply that the radius of convergence
of this random walk should be exp(1�6), whereas we performed numerical
computations with MathCad finding an approximate value r

*
r1.231.

6. DISCUSSION

As we showed in this paper, the property of isotropy is strongly linked
to geometrical properties of the graph, more than the asymptotical
isotropy. The main property we used is, roughly speaking, the rotational
symmetry of both the graph and the random walk; this is the substantial
meaning of the x0-radiality and 1x0

-invariance.
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The point (ii) of Theorem 2.2 is a partial converse of the point (i) in
the case of trees: we showed that every random walk which is isotropic
with respect to a point x0 needs to be invariant with respect to all the
rotations centered in x0 . The question whether a tree equipped with an
x0 -isotropic random walk must be x0 -radial is (as far as we know) still
open. Besides, we do not know if there is an equivalent of Theorem 2.2(ii)
for general graphs.

The property of asymptotical isotropy does not depend so much on
geometrical properties of the graph. The main result (Theorem 3.1) shows
that, upender the hypoteses of recurrence and strong periodicity, the ran-
dom walk ``forgets'' the starting point and, as time grows up to infinity, it
depends only on the ending point. This has many consequences as we
showed in Theorem 3.2. Another important consequence, which derives by
Eq. (5), is that the asymptotical values for the transition probabilities of a
reversible, recurrent, strongly periodic random walk (X, P) are independent
of the starting points and depend only on the value of the reversibility func-
tion & evaluated in the ending points. More precisely it is easy to show,
from Eq. (5), that, if x, y, x1 , y1 # X and m, k # N are such that p(m)(x, y)>0
and p(k)(x1 , y1)>0, then

p(n+m)(x, y)t
n p(n+k)(x1 , y1)

&( y)
&( y1)

This means that if we know the asymptotical value of the transition
probabilities for a couple (x, y) we know them also for the other pairs.

The family of examples of non asymptotically isotropic random walks,
that we gave in Paragraph 5, is strongly linked with a property of the
Green function of Z2 (see Eq. (32)). This is true because we chose to com-
pare two paths lying, roughly speaking, on the copy of Z2 which contains
the unit of the group e. This behaviour is quite singular; in fact the simple
random walk on Z2 is asymptotically isotropic; we proved that if we con-
sider the free product between Z2 and a group 1 (which satisfies some
assumptions), the free product of the random walks behaves in a totally
different way. Suppose that the number of steps n is large and consider the
probability of the random walk to be in a certain point belonging to
[e] V Z2: the closer the point is to one of the bisectors of Z2, the higher is
this probability.

The strategy we used here is rather general and could be employed to
construct other classes of examples (it suffices to find a group playing the
same role as Z2, with a Green function behaving in a similar way (see
Eq. (32)).
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In particular we showed that the simple random walk on Z V Z2 is not
asymptotically isotropic; since this group is a subgroup of every locally free
group LFn(d ), provided that n�d+2, (see ref. 5, Definition 3) one could
conjecture that none of the simple random walks on these groups is
isotropic.
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